

# GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

| Semester: 7 <sup>th</sup>                                                                             |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|---------|--|
| Paper code: AIML411T                                                                                  |                                                                                                |      |      |      |      |      |      |      | L    | T/I  | P C  | redits  |  |
| Subject: Advances in Machine Learning                                                                 |                                                                                                |      |      |      |      |      |      |      | 3    | 0    |      | 3       |  |
| Marking Scheme:                                                                                       |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 1. Teachers Continuous Evaluation: As per university examination norms from time to time              |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 2. End Term Theory Examination: As per university examination norms from time to time                 |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 1. There should be 0 questions in the end term examination question paper                             |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 1. In                                                                                                 | Inere should be 9 questions in the end term examination question paper.                        |      |      |      |      |      |      |      |      |      |      |         |  |
|                                                                                                       | objective or short answer type questions.                                                      |      |      |      |      |      |      |      |      |      |      |         |  |
| 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus.  |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| Every unit should have two questions. However, students may be asked to attempt only 1 question       |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| from each unit.                                                                                       |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 4. Th                                                                                                 | 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The   |      |      |      |      |      |      |      |      |      |      |         |  |
| standard/ level of the questions to be asked should be at the level of the prescribed textbooks.      |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| 1.                                                                                                    | 1. Explore and comprehend advanced ML algorithms, their strengths, and weaknesses              |      |      |      |      |      |      |      |      |      |      |         |  |
| 2.                                                                                                    | Master techniques to interpret and explain ML model predictions for transparency and trust.    |      |      |      |      |      |      |      |      |      |      |         |  |
| 3.                                                                                                    | Build and train deep learning models to address specific tasks and datasets.                   |      |      |      |      |      |      |      |      |      |      |         |  |
| 4.                                                                                                    | Apply the acquired knowledge to tackle real-world challenges in AI and ML domains.             |      |      |      |      |      |      |      |      |      |      |         |  |
| Course Outcomes:                                                                                      |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| C01                                                                                                   | . Analyze and apply advanced machine learning algorithms to solve complex real-world problems. |      |      |      |      |      |      |      |      |      |      |         |  |
| CO2                                                                                                   | Evaluate and interpret ML models to understand their decision-making processes.                |      |      |      |      |      |      |      |      |      |      |         |  |
| CO3                                                                                                   | Implement deep learning architectures for tasks like image analysis, language processing, and  |      |      |      |      |      |      |      |      |      |      |         |  |
|                                                                                                       | sequence modeling.                                                                             |      |      |      |      |      |      |      |      |      |      |         |  |
| 04                                                                                                    | domains                                                                                        |      |      |      |      |      |      |      |      |      |      | ins and |  |
| Course Outcomes (CO) to Programme Outcomes (PO)                                                       |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| Mapping (Scale 1: Low, 2: Medium, 3: High                                                             |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| CO/                                                                                                   | PO01                                                                                           | PO02 | PO03 | PO04 | PO05 | PO06 | PO07 | PO08 | PO09 | PO10 | PO11 | PO12    |  |
| РО                                                                                                    |                                                                                                |      |      |      |      |      |      |      |      |      |      |         |  |
| CO1                                                                                                   | 1                                                                                              | 2    | 3    | 3    | 1    | 1    | -    | 1    | 1    | -    | -    | 2       |  |
| CO2                                                                                                   | 2                                                                                              | 2    | 3    | 3    | 1    | 1    | -    | 1    | 1    | -    | -    | 2       |  |
| CO3                                                                                                   | 2                                                                                              | 2    | 3    | 3    | 1    | 1    | -    | 1    | 2    | -    | -    | 2       |  |
| CO4                                                                                                   | 2                                                                                              | 2    | 3    | 3    | 2    | 1    | 1    | 1    | 2    | -    | -    | 2       |  |

#### **Course Overview:**

This course explores advanced topics in machine learning for B.Tech AI and ML students. It covers recent developments in algorithms, model interpretability, deep learning architectures, and applications. Students gain hands-on experience with cutting-edge ML tools and frameworks.



## GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

#### Unit I

[8]

Advanced ML Algorithms: Ensemble Learning and Ensemble methods: Bagging, Boosting, and Stacking, and Kernel Methods.

Reinforcement Learning: Q Learning, HMM model, Deep Reinforcement Learning

## Unit II

[8]

[8]

[8]

**Model Interpretability and Explainability:** Feature importance and SHAP values, LIME (Local Interpretable Model-agnostic Explanations), Explainable AI (XAI) techniques,

## Unit III

**Deep Learning Architectures:** Convolutional Neural Networks (CNN) for image analysis, Recurrent Neural Networks (RNN) for sequence data, Transformers and Attention mechanisms

## Unit IV

**Applications of Advanced ML:** Natural Language Processing (NLP) with BERT and GPT, Generative Adversarial Networks (GANs) for image synthesis, Transfer learning and domain adaptation

## Textbooks:

- 1. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
- 2. "Pattern Recognition and Machine Learning" by Christopher M. Bishop
- 3. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

## **Reference Books:**

- 1. "Interpretable Machine Learning" by Christoph Molnar
- 2. "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto
- 3. "Natural Language Processing in Action" by Lane, Howard, and Hapke